Conversions Between Common Orientation Representations
이 기사에서는 로봇에 일반적인 방향 표현 간의 변환을 위한 방정식을 제시합니다. 포즈 표현에 대한 자세한 내용은 Position, Orientation and Coordinate Transformations 을 확인하십시오.
Roll-Pitch-Yaw to Rotation Matrix
Roll-pitch-yaw는 방향을 나타내는 일반적인 용어입니다. 각각은 단일 축을 중심으로 한 회전 각도를 나타내며 결합하여 완전한 회전을 나타냅니다. 그러나 정확히 무엇을 나타내는지는 명확하지 않습니다. 다음과 같은 혼란을 겪을 수 있습니다.
각각 어떤 축을 중심으로 회전합니까?
이 축은 고정되어 있습니까, 아니면 이동 중입니까?
회전은 어떤 순서로 정의됩니까(여러 가지 가능성이 있음)?
회전 순서는 종종 x-y-z
또는 z-y'-x''
로 표시됩니다. 여기서 x
, y
및 z
는 회전하는 축을 나타냅니다. '
는 축의 고정 여부를 나타내는 데 사용됩니다. 고정 축을 중심으로 하는 회전을 extrinsic rotation
이라고 합니다. 움직이는 축을 중심으로 회전하는 것을 intrinsic rotation
이라고 합니다.
다음은 두 가지 다른 예입니다.
x-y-z
또는 z-y'-x''
의 경우, 롤 \(\phi\), 피치 \(\theta\) 및 요 \(\psi\) 각도는 다음과 같이 회전 행렬 \(R\) 로 변환할 수 있습니다.:
z-y-x
또는 x-y'-z''
의 경우, 롤 \(\phi\), 피치 \(\theta\) 및 요 \(\psi\) 각도는 다음과 같이 회전 행렬 \(R\) 로 변환할 수 있습니다.:
참고
두 예에서 각도가 동일하다고 가정하면 동일한 최종 회전 행렬을 나타내지 않습니다.
최종 회전 행렬이 동일하다고 가정하면 두 예제 간에 각도가 동일하지 않습니다.
정의가 도입되었습니다. 롤 각도는 움직이는 축에 대한 첫 번째 회전에 할당되고, 피치는 두 번째, 요는 세 번째 회전에 할당됩니다.
rollPitchYawListToRotationMatrix(rpyList);
rollPitchYawListToRotationMatrix(rpyList);
roll_pitch_yaw_to_rotation_matrix(rpy_list)
Rotation Vector to Axis-Angle
회전 벡터 \(\boldsymbol{r}\) 는 다음과 같이 축 \(\boldsymbol{u}\) 과 각도 \(\theta\) 로 변환할 수 있습니다.:
Axis-Angle to Quaternion
축 \(\boldsymbol{u}\) 과 각도 \(\theta\) 는 다음과 같이 unit quaternion \(\boldsymbol{q}\) 로 변환할 수 있습니다.:
Quaternion to Rotation Matrix
unit quaternion \(\boldsymbol{q}\) 는 다음과 같이 회전 행렬 \(\boldsymbol{R}\) 로 변환할 수 있습니다.:
quaternion이 \((q_w + q_x + q_y + q_z = 1)\) 와 같이 정규화되었다고 가정합니다. 그렇지 않은 경우 다음 방정식을 사용하여 변환을 수행하기 전에 정규화해야 합니다.
const Eigen::Matrix3f rotationMatrixFromQuaternion = quaternion.toRotationMatrix();
std::cout << "Rotation Matrix from Quaternion:\n"
<< rotationMatrixFromQuaternion.format(matrixFormatRules) << std::endl;
var rotationMatrixFromQuaternion = quaternionToRotationMatrix(quaternion);
Console.WriteLine("Rotation Matrix from Quaternion:\n" + matrixToString(rotationMatrixFromQuaternion));
rotation_matrix_from_quaternion = quaternion_to_rotation_matrix(quaternion)
print(f"Rotation Matrix from Quaternion:\n{rotation_matrix_from_quaternion}")
Rotation Matrix to Quaternion
회전 행렬 \(\boldsymbol{R}\) 을 다음과 같이 unit quaternion \(\boldsymbol{q}\) 으로 변환할 수 있습니다.:
const Eigen::Quaternionf quaternion(rotationMatrix);
std::cout << "Quaternion:\n" << quaternion.coeffs().format(vectorFormatRules) << std::endl;
var quaternion = rotationMatrixToQuaternion(rotationMatrix);
Console.WriteLine("Quaternion:\n" + matrixToString(quaternion.Transpose()));
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
print(f"Quaternion:\n{quaternion}")
Quaternion to Axis-Angle
unit quaternion \(\boldsymbol{q}\) 는 다음과 같이 축 \(\boldsymbol{u}\) 과 각도 \(\theta\) 로 변환할 수 있습니다.:
이것은 회전 행렬에서 축 각도로 변환하는 데 유용합니다. 아래 코드 샘플 구현을 참조하십시오.
const Eigen::AngleAxisf axisAngle(rotationMatrix);
std::cout << "AxisAngle:\n"
<< axisAngle.axis().format(vectorFormatRules) << ", " << axisAngle.angle() << std::endl;
var axisAngle = rotationMatrixToAxisAngle(rotationMatrix);
Console.WriteLine("AxisAngle:\n" + matrixToString(axisAngle.Axis.Transpose()) + ", " + String.Format(" {0:G4} ", axisAngle.Angle));
axis_angle = rotation_matrix_to_axis_angle(rotation_matrix)
print(f"AxisAngle:\n{axis_angle.axis}, {axis_angle.angle:.4f}")
Axis-Angle to Rotation Vector
축 \(\boldsymbol{u}\) 과 각도 \(\theta\) 는 다음과 같이 회전 벡터 \(\boldsymbol{r}\) 로 변환할 수 있습니다.:
이것은 회전 행렬을 회전 벡터로 변환하는 데 유용합니다. 아래 코드 샘플 구현을 참조하십시오.
const Eigen::Vector3f rotationVector = rotationMatrixToRotationVector(rotationMatrix);
std::cout << "Rotation Vector:\n" << rotationVector.format(vectorFormatRules) << std::endl;
var rotationVector = axisAngle.Axis * axisAngle.Angle;
Console.WriteLine("Rotation Vector:\n" + matrixToString(rotationVector.Transpose()));
rotation_vector = rotation_matrix_to_rotation_vector(rotation_matrix)
print(f"Rotation Vector:\n{rotation_vector}")
Rotation Matrix to Roll-Pitch-Yaw
회전 매트릭스에서 롤, 피치, 요 각도를 결정하는 것은 간단하지 않습니다. 여러 가지, 때로는 무한한 솔루션이 있을 수도 있습니다. 이를 위해서는 몇 가지 기준에 따라 여러 솔루션 중 하나를 선택할 수 있는 알고리즘이 필요합니다.
const auto rpyList = rotationMatrixToRollPitchYawList(rotationMatrix);
var rpyList = rotationMatrixToRollPitchYawList(rotationMatrix);
rpy_list = rotation_matrix_to_roll_pitch_yaw(rotation_matrix)