ROI Box via ArUco Marker

This tutorial demonstrates how to find the ROI box parameters using an ArUco marker and how to filter the contents of a bin using it. We are here using the ArUco marker on the Zivid calibration board, and assume the calibration board is placed in the bottom right corner of the bin. The bin size is also assumed known and is used to set the dimensions of the ROI box. This way you can automatically find the ROI parameters in the camera frame.

Note

This tutorial uses a file camera for the scene in the image below for demonstration.

Tip

ROI box filtering reduces capture time.

The file camera can be downloaded from Sample Data.

First, we capture a point cloud of the ArUco marker.

Go to source

source

const auto fileCamera = std::string(ZIVID_SAMPLE_DATA_DIR) + "/BinWithCalibrationBoard.zfc";

std::cout << "Creating virtual camera using file: " << fileCamera << std::endl;
auto camera = zivid.createFileCamera(fileCamera);

auto settings = Zivid::Settings{ Zivid::Settings::Acquisitions{ Zivid::Settings::Acquisition{} } };

const auto originalFrame = camera.capture(settings);
auto pointCloud = originalFrame.pointCloud();
Go to source

source

string fileCamera = Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData) + "/Zivid/BinWithCalibrationBoard.zfc";

Console.WriteLine("Creating virtual camera using file: " + fileCamera);
var camera = zivid.CreateFileCamera(fileCamera);

var settings = new Zivid.NET.Settings
{
    Acquisitions = { new Zivid.NET.Settings.Acquisition { } }
};

var originalFrame = camera.Capture(settings);
var pointCloud = originalFrame.PointCloud;
Go to source

source

file_camera = get_sample_data_path() / "BinWithCalibrationBoard.zfc"

print(f"Creating virtual camera using file: {file_camera}")
camera = app.create_file_camera(file_camera)

settings = zivid.Settings([zivid.Settings.Acquisition()])

original_frame = camera.capture(settings)
point_cloud = original_frame.point_cloud()

The ArUco marker frame has its origin in the center of the ArUco marker.

ROI box size and bottom-right corner relative to the checkerboard frame.

We define the position of the bottom-right corner of the ROI box relative to the ArUco marker frame, and the ROI box size. Then we subtract the width of the bin edge from the length and width to remove the bin walls.

Go to source

source

const float roiBoxLength = 545.F;
const float roiBoxWidth = 345.F;
const float roiBoxHeight = 150.F;
// Coordinates are relative to the ArUco marker origin which lies in the center of the ArUco marker.
// Positive x-axis is "East", y-axis is "South" and z-axis is "Down".
const Zivid::PointXYZ roiBoxLowerRightCornerInArUcoFrame{ 240.F, 30.F, 5.F };
const Zivid::PointXYZ roiBoxUpperRightCornerInArUcoFrame{ roiBoxLowerRightCornerInArUcoFrame.x,
                                                          roiBoxLowerRightCornerInArUcoFrame.y - roiBoxWidth,
                                                          roiBoxLowerRightCornerInArUcoFrame.z };
const Zivid::PointXYZ roiBoxLowerLeftCornerInArUcoFrame{ roiBoxLowerRightCornerInArUcoFrame.x - roiBoxLength,
                                                         roiBoxLowerRightCornerInArUcoFrame.y,
                                                         roiBoxLowerRightCornerInArUcoFrame.z };
Go to source

source

float roiBoxLength = 545F;
float roiBoxWidth = 345F;
float roiBoxHeight = 150F;
// Coordinates are relative to the checkerboard origin which lies in the intersection between the four checkers
// in the top-left corner of the checkerboard: Positive x-axis is "East", y-axis is "South" and z-axis is "Down"
var roiBoxLowerRightCornerInCheckerboardFrame = new Zivid.NET.PointXYZ
{
    x = 240F,
    y = 30F,
    z = 5F
};
var roiBoxUpperRightCornerInCheckerboardFrame = new Zivid.NET.PointXYZ
{
    x = roiBoxLowerRightCornerInCheckerboardFrame.x,
    y = roiBoxLowerRightCornerInCheckerboardFrame.y - roiBoxWidth,
    z = roiBoxLowerRightCornerInCheckerboardFrame.z
};
var roiBoxLowerLeftCornerInCheckerboardFrame = new Zivid.NET.PointXYZ
{
    x = roiBoxLowerRightCornerInCheckerboardFrame.x - roiBoxLength,
    y = roiBoxLowerRightCornerInCheckerboardFrame.y,
    z = roiBoxLowerRightCornerInCheckerboardFrame.z

};
Go to source

source

roi_box_length = 545
roi_box_width = 345
roi_box_height = 150
roi_box_lower_right_corner_in_aruco_frame = np.array([240, 30, 5])
roi_box_upper_right_corner_in_aruco_frame = np.array(
    [
        roi_box_lower_right_corner_in_aruco_frame[0],
        roi_box_lower_right_corner_in_aruco_frame[1] - roi_box_width,
        roi_box_lower_right_corner_in_aruco_frame[2],
    ]
)
roi_box_lower_left_corner_in_aruco_frame = np.array(
    [
        roi_box_lower_right_corner_in_aruco_frame[0] - roi_box_length,
        roi_box_lower_right_corner_in_aruco_frame[1],
        roi_box_lower_right_corner_in_aruco_frame[2],
    ]
)

The three points that define the base frame of the ROI box can then be set.

Go to source

source

const Zivid::PointXYZ pointOInArUcoFrame = roiBoxLowerRightCornerInArUcoFrame;
const Zivid::PointXYZ pointAInArUcoFrame = roiBoxUpperRightCornerInArUcoFrame;
const Zivid::PointXYZ pointBInArUcoFrame = roiBoxLowerLeftCornerInArUcoFrame;
Go to source

source

var pointOInCheckerboardFrame = roiBoxLowerRightCornerInCheckerboardFrame;
var pointAInCheckerboardFrame = roiBoxUpperRightCornerInCheckerboardFrame;
var pointBInCheckerboardFrame = roiBoxLowerLeftCornerInCheckerboardFrame;
Go to source

source

point_o_in_aruco_frame = roi_box_lower_right_corner_in_aruco_frame
point_a_in_aruco_frame = roi_box_upper_right_corner_in_aruco_frame
point_b_in_aruco_frame = roi_box_lower_left_corner_in_aruco_frame

Then we configure the ArUco marker.

Go to source

source

std::cout << "Configuring ArUco marker" << std::endl;
const auto markerDictionary = Zivid::Calibration::MarkerDictionary::aruco4x4_50;
std::vector<int> markerId = { 1 };
Go to source

source

Console.WriteLine("Configuring ArUco marker");
var markerDictionary = Zivid.NET.MarkerDictionary.Aruco4x4_50;
var markerId = new List<int> { 1 };
Go to source

source

print("Configuring ArUco marker")
marker_dictionary = zivid.calibration.MarkerDictionary.aruco4x4_50
marker_id = [1]

We then detect the ArUco marker.

Go to source

source

std::cout << "Detecting ArUco marker" << std::endl;
const auto detectionResult = Zivid::Calibration::detectMarkers(originalFrame, markerId, markerDictionary);
Go to source

source

Console.WriteLine("Detecting ArUco marker");
var detectionResult = Detector.DetectMarkers(originalFrame, markerId, markerDictionary);
Go to source

source

print("Detecting ArUco marker")
detection_result = zivid.calibration.detect_markers(original_frame, marker_id, marker_dictionary)

Then we estimate the pose of the ArUco marker to transform the three points into the camera frame of reference.

Go to source

source

std::cout << "Estimating pose of detected ArUco marker" << std::endl;
const auto cameraToMarkerTransform = detectionResult.detectedMarkers()[0].pose().toMatrix();
std::cout << "Transforming the ROI base frame points to the camera frame" << std::endl;
const auto roiPointsInCameraFrame = transformPoints(
    std::vector<Zivid::PointXYZ>{ pointOInArUcoFrame, pointAInArUcoFrame, pointBInArUcoFrame },
    cameraToMarkerTransform);
Go to source

source

Console.WriteLine("Estimating pose of detected ArUco marker");
var cameraToMarkerTransform = new Zivid.NET.Matrix4x4(detectionResult.DetectedMarkers()[0].Pose().ToMatrix());
Console.WriteLine("Transforming the ROI base frame points to the camera frame");
var roiPointsInCameraFrame = TransformPoints(
    new List<Zivid.NET.PointXYZ> { pointOInCheckerboardFrame, pointAInCheckerboardFrame, pointBInCheckerboardFrame },
    cameraToMarkerTransform);
Go to source

source

print("Estimating pose of detected ArUco marker")
camera_to_marker_transform = detection_result.detected_markers()[0].pose.to_matrix()
print("Transforming the ROI base frame points to the camera frame")
roi_points_in_camera_frame = _transform_points(
    [point_o_in_aruco_frame, point_a_in_aruco_frame, point_b_in_aruco_frame],
    camera_to_marker_transform,
)

Hint

Learn more about Position, Orientation and Coordinate Transformations to understand how this works.

Now we can filter the point cloud based on the size and position of the ROI box. The first extent is set to a small negative value to include the floor, and the second extent is set to the desired height of the box.

Go to source

source

settings.set(Zivid::Settings::RegionOfInterest{
    Zivid::Settings::RegionOfInterest::Box::Enabled::yes,
    Zivid::Settings::RegionOfInterest::Box::PointO{ roiPointsInCameraFrame[0] },
    Zivid::Settings::RegionOfInterest::Box::PointA{ roiPointsInCameraFrame[1] },
    Zivid::Settings::RegionOfInterest::Box::PointB{ roiPointsInCameraFrame[2] },
    Zivid::Settings::RegionOfInterest::Box::Extents{ -10, roiBoxHeight } });
Go to source

source

settings.RegionOfInterest.Box.Enabled = true;
settings.RegionOfInterest.Box.PointO = roiPointsInCameraFrame[0];
settings.RegionOfInterest.Box.PointA = roiPointsInCameraFrame[1];
settings.RegionOfInterest.Box.PointB = roiPointsInCameraFrame[2];
settings.RegionOfInterest.Box.Extents = new Zivid.NET.Range<double>(-10, roiBoxHeight);
Go to source

source

settings.region_of_interest.box.enabled = True
settings.region_of_interest.box.point_o = roi_points_in_camera_frame[0]
settings.region_of_interest.box.point_a = roi_points_in_camera_frame[1]
settings.region_of_interest.box.point_b = roi_points_in_camera_frame[2]
settings.region_of_interest.box.extents = (-10, roi_box_height)

Finally, we take a new capture and visualize the filtered point cloud.

Go to source

source

const auto roiFrame = camera.capture(settings);

std::cout << "Displaying the ROI-filtered point cloud" << std::endl;
visualizeZividPointCloud(roiFrame);
Go to source

source

var roiFrame = camera.Capture(settings);

Console.WriteLine("Displaying the ROI-filtered point cloud");
VisualizeZividPointCloud(roiFrame);
Go to source

source

roi_point_cloud = camera.capture(settings).point_cloud()

print("Displaying the ROI-filtered point cloud")
display_pointcloud(roi_point_cloud.copy_data("xyz"), roi_point_cloud.copy_data("rgba")[:, :, :3])

ROI filtered and transformed point cloud of a bin with checkerboard

To filter the point cloud based on a ROI box, you can run our code sample.

Sample: ROIBoxViaArucoMarker.cpp

./ROIBoxViaArucoMarker

Sample: ROIBoxViaArucoMarker.cs

./ROIBoxViaArucoMarker

Sample: roi_box_via_aruco_marker.py

python roi_box_via_aruco_marker.py

Tip

Modify the code sample if you wish to use this in your own setup:

  1. Replace the file camera with your actual camera and settings.

  2. Place the calibration board in the bottom right corner of your bin.

  3. Modify the ROI box size to your bin size.

  4. Run sample!

You can now save the capture settings with the ROI parameters, remove the calibration board and use the settings on the whole bin.