Visualization Tutorial
Introduction
This tutorial describes how to use Zivid SDK and third party libraries to visualize 3D and 2D data captured by a Zivid camera.
Prerequisites
Install Zivid Software.
For Python: install zivid-python
This tutorial starts with a Zivid Frame. See: Capture Tutorial for more information on how to capture a frame.
Point Cloud
Zivid SDK in C++ and C#
Having the frame allows you to visualize the point cloud.
std::cout << "Setting up visualization" << std::endl;
Zivid::Visualization::Visualizer visualizer;
std::cout << "Visualizing point cloud" << std::endl;
visualizer.showMaximized();
visualizer.show(frame);
visualizer.resetToFit();
std::cout << "Running visualizer. Blocking until window closes" << std::endl;
visualizer.run();
Console.WriteLine("Setting up visualization");
var visualizer = new Zivid.NET.Visualization.Visualizer();
Console.WriteLine("Visualizing point cloud");
visualizer.Show(frame);
visualizer.ShowMaximized();
visualizer.ResetToFit();
Console.WriteLine("Running visualizer. Blocking until window closes");
visualizer.Run();
You can visualize the point cloud from the point cloud object as well.
std::cout << "Getting point cloud from frame" << std::endl;
auto pointCloud = frame.pointCloud();
std::cout << "Setting up visualization" << std::endl;
Zivid::Visualization::Visualizer visualizer;
std::cout << "Visualizing point cloud" << std::endl;
visualizer.showMaximized();
visualizer.show(pointCloud);
visualizer.resetToFit();
std::cout << "Running visualizer. Blocking until window closes" << std::endl;
visualizer.run();
Console.WriteLine("Getting point cloud from frame");
var pointCloud = frame.PointCloud;
Console.WriteLine("Setting up visualization");
var visualizer = new Zivid.NET.Visualization.Visualizer();
Console.WriteLine("Visualizing point cloud");
visualizer.Show(pointCloud);
visualizer.ShowMaximized();
visualizer.ResetToFit();
Console.WriteLine("Running visualizer. Blocking until window closes");
visualizer.Run();
Open3D in Python
Since Zivid-Python does not support point cloud visualization, we have implemented it using Open3D.
point_cloud = frame.point_cloud()
xyz = point_cloud.copy_data("xyz")
rgba = point_cloud.copy_data("rgba")
print("Visualizing point cloud")
display_pointcloud(xyz, rgba[:, :, 0:3])
The implementation of the function to visualize the point cloud is demonstrated below.
def display_pointcloud(xyz: np.ndarray, rgb: np.ndarray, normals: Optional[np.ndarray] = None) -> None:
"""Display point cloud provided from 'xyz' with colors from 'rgb'.
Args:
rgb: RGB image
xyz: A numpy array of X, Y and Z point cloud coordinates
normals: Ordered array of normal vectors, mapped to xyz
"""
xyz = np.nan_to_num(xyz).reshape(-1, 3)
if normals is not None:
normals = np.nan_to_num(normals).reshape(-1, 3)
rgb = rgb.reshape(-1, 3)
point_cloud_open3d = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(xyz))
point_cloud_open3d.colors = o3d.utility.Vector3dVector(rgb / 255)
if normals is not None:
point_cloud_open3d.normals = o3d.utility.Vector3dVector(normals)
print("Open 3D controls:")
print(" n: for normals")
print(" 9: for point cloud colored by normals")
print(" h: for all controls")
visualizer = o3d.visualization.Visualizer() # pylint: disable=no-member
visualizer.create_window()
visualizer.add_geometry(point_cloud_open3d)
if normals is None:
visualizer.get_render_option().background_color = (0, 0, 0)
visualizer.get_render_option().point_size = 1
visualizer.get_render_option().show_coordinate_frame = True
visualizer.get_view_control().set_front([0, 0, -1])
visualizer.get_view_control().set_up([0, -1, 0])
visualizer.run()
visualizer.destroy_window()
Color Image
Since Zivid SDK and Zivid-Python do not support 2D color image visualization, we have implemented it using third party libraries: OpenCV in C++ and Python, and Matplotlib in Python.
OpenCV in C++
First, we convert the point cloud to OpenCV color image.
std::cout << "Converting to BGR image in OpenCV format" << std::endl;
cv::Mat bgr = pointCloudToCvBGR(pointCloud);
The implementation of the function to convert the point cloud to color image is demonstrated below.
cv::Mat pointCloudToCvBGR(const Zivid::PointCloud &pointCloud)
{
auto rgb = cv::Mat(pointCloud.height(), pointCloud.width(), CV_8UC4);
pointCloud.copyData(reinterpret_cast<Zivid::ColorRGBA *>(rgb.data));
auto bgr = cv::Mat(pointCloud.height(), pointCloud.width(), CV_8UC4);
cv::cvtColor(rgb, bgr, cv::COLOR_BGR2RGB);
return bgr;
}
Tip
It is also possible to get the OpenCV color image directly from the Zivid 2D color image
We can now visualize the color image.
cv::namedWindow("BGR image", cv::WINDOW_AUTOSIZE);
cv::imshow("BGR image", bgr);
cv::waitKey(0);
OpenCV in Python
First, we convert the point cloud to OpenCV color image.
print("Converting to BGR image in OpenCV format")
bgr = _point_cloud_to_cv_bgr(point_cloud)
The implementation of the function to convert the point cloud to color image is demonstrated below.
def _point_cloud_to_cv_bgr(point_cloud: zivid.PointCloud) -> np.ndarray:
"""Get bgr image from frame.
Args:
point_cloud: Zivid point cloud
Returns:
bgr: BGR image (HxWx3 ndarray)
"""
rgba = point_cloud.copy_data("rgba")
# Applying color map
bgr = cv2.cvtColor(rgba, cv2.COLOR_RGBA2BGR)
return bgr
Tip
It is also possible to get the OpenCV color image directly from the Zivid 2D color image
We can now visualize the color image.
_visualize_and_save_image(bgr, bgr_image_file, "BGR image")
The implementation of the visualization function is demonstrated below.
def _visualize_and_save_image(image: np.ndarray, image_file: str, window_name: str) -> None:
"""Visualize and save image to file.
Args:
image: BGR image (HxWx3 ndarray)
image_file: File name
window_name: OpenCV Window name
"""
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.imshow(window_name, image)
print("Press any key to continue")
cv2.waitKey(0)
cv2.destroyWindow(window_name)
cv2.imwrite(image_file, image)
Matplotlib in Python
Matplotlib offers a simpler way to visualize the color image in Python.
display_rgb(rgba[:, :, 0:3], block=False)
The function implementation is demonstrated below.
def display_rgb(rgb: np.ndarray, title: str = "RGB image", block: bool = True) -> None:
"""Display RGB image.
Args:
rgb: RGB image (HxWx3 ndarray)
title: Image title
block: Stops the running program until the windows is closed
"""
plt.figure()
plt.imshow(rgb)
plt.title(title)
plt.show(block=block)
Depth Map
Since Zivid SDK and Zivid-Python do not support depth map visualization, we have implemented it using third party libraries: OpenCV in C++ and Python, and Matplotlib in Python.
OpenCV in C++
First, we convert the point cloud to OpenCV depth map.
std::cout << "Converting to Depth map in OpenCV format" << std::endl;
cv::Mat zColorMap = pointCloudToCvZ(pointCloud);
The implementation of the function to convert the point cloud to depth map is demonstrated below.
cv::Mat pointCloudToCvZ(const Zivid::PointCloud &pointCloud)
{
cv::Mat z(pointCloud.height(), pointCloud.width(), CV_8UC1, cv::Scalar(0)); // NOLINT(hicpp-signed-bitwise)
const auto points = pointCloud.copyPointsZ();
// Getting min and max values for X, Y, Z images
const auto *maxZ = std::max_element(points.data(), points.data() + pointCloud.size(), isLesserOrNan);
const auto *minZ = std::max_element(points.data(), points.data() + pointCloud.size(), isGreaterOrNaN);
// Filling in OpenCV matrix with the cloud data
for(size_t i = 0; i < pointCloud.height(); i++)
{
for(size_t j = 0; j < pointCloud.width(); j++)
{
if(std::isnan(points(i, j).z))
{
z.at<uchar>(i, j) = 0;
}
else
{
z.at<uchar>(i, j) =
static_cast<unsigned char>((255.0F * (points(i, j).z - minZ->z) / (maxZ->z - minZ->z)));
}
}
}
// Applying color map
cv::Mat zColorMap;
cv::applyColorMap(z, zColorMap, cv::COLORMAP_VIRIDIS);
// Setting invalid points (nan) to black
for(size_t i = 0; i < pointCloud.height(); i++)
{
for(size_t j = 0; j < pointCloud.width(); j++)
{
if(std::isnan(points(i, j).z))
{
auto &zRGB = zColorMap.at<cv::Vec3b>(i, j);
zRGB[0] = 0;
zRGB[1] = 0;
zRGB[2] = 0;
}
}
}
return zColorMap;
}
We can now visualize the depth map.
cv::namedWindow("Depth map", cv::WINDOW_AUTOSIZE);
cv::imshow("Depth map", zColorMap);
cv::waitKey(0);
OpenCV in Python
First, we convert the point cloud to OpenCV depth map.
print("Converting to Depth map in OpenCV format")
z_color_map = _point_cloud_to_cv_z(point_cloud)
The implementation of the function to convert the point cloud to depth map is demonstrated below.
def _point_cloud_to_cv_z(point_cloud: zivid.PointCloud) -> np.ndarray:
"""Get depth map from frame.
Args:
point_cloud: Zivid point cloud
Returns:
depth_map_color_map: Depth map (HxWx1 ndarray)
"""
depth_map = point_cloud.copy_data("z")
depth_map_uint8 = ((depth_map - np.nanmin(depth_map)) / (np.nanmax(depth_map) - np.nanmin(depth_map)) * 255).astype(
np.uint8
)
depth_map_color_map = cv2.applyColorMap(depth_map_uint8, cv2.COLORMAP_VIRIDIS)
# Setting nans to black
depth_map_color_map[np.isnan(depth_map)[:, :]] = 0
return depth_map_color_map
We can now visualize the depth map.
_visualize_and_save_image(z_color_map, depth_map_file, "Depth map")
The function implementation is demonstrated below.
def _visualize_and_save_image(image: np.ndarray, image_file: str, window_name: str) -> None:
"""Visualize and save image to file.
Args:
image: BGR image (HxWx3 ndarray)
image_file: File name
window_name: OpenCV Window name
"""
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.imshow(window_name, image)
print("Press any key to continue")
cv2.waitKey(0)
cv2.destroyWindow(window_name)
cv2.imwrite(image_file, image)
Matplotlib in Python
Matplotlib offers a simpler way to visualize the depth map in Python.
display_depthmap(xyz, block=True)
The function implementation is demonstrated below.
def display_depthmap(xyz: np.ndarray, block: bool = True) -> None:
"""Create and display depthmap.
Args:
xyz: A numpy array of X, Y and Z point cloud coordinates
block: Stops the running program until the windows is closed
"""
plt.figure()
plt.imshow(
xyz[:, :, 2],
vmin=np.nanmin(xyz[:, :, 2]),
vmax=np.nanmax(xyz[:, :, 2]),
cmap="viridis",
)
plt.colorbar()
plt.title("Depth map")
plt.show(block=block)
Normals
Since Zivid SDK does not support visualization of normals, we have implemented it using third party libraries, PCL in C++, and Open3D in Python.
PCL in C++
We can visualize normals as follows.
std::cout << "Visualizing normals" << std::endl;
visualizePointCloudAndNormalsPCL(pointCloudPCL.makeShared(), pointCloudWithNormalsPCL.makeShared());
The function implementation is demonstrated below.
void visualizePointCloudAndNormalsPCL(
const pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr &pointCloud,
const pcl::PointCloud<pcl::PointXYZRGBNormal>::ConstPtr &pointCloudWithNormals)
{
auto viewer = pcl::visualization::PCLVisualizer("Viewer");
int viewRgb(0);
viewer.createViewPort(0.0, 0.0, 0.5, 1.0, viewRgb);
viewer.addText("Cloud RGB", 0, 0, "RGBText", viewRgb);
viewer.addPointCloud<pcl::PointXYZRGB>(pointCloud, "cloud", viewRgb);
const int normalsSkipped = 10;
std::cout << "Note! 1 out of " << normalsSkipped << " normals are visualized" << std::endl;
int viewNormals(0);
viewer.createViewPort(0.5, 0.0, 1.0, 1.0, viewNormals);
viewer.addText("Cloud Normals", 0, 0, "NormalsText", viewNormals);
viewer.addPointCloud<pcl::PointXYZRGBNormal>(pointCloudWithNormals, "cloudNormals", viewNormals);
viewer.addPointCloudNormals<pcl::PointXYZRGBNormal>(
pointCloudWithNormals, normalsSkipped, 1, "normals", viewNormals);
viewer.setCameraPosition(0, 0, -100, 0, -1, 0);
std::cout << "Press r to centre and zoom the viewer so that the entire cloud is visible" << std::endl;
std::cout << "Press q to exit the viewer application" << std::endl;
while(!viewer.wasStopped())
{
viewer.spinOnce(100);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
Open3D in Python
We can visualize normals as follows.
normals_colormap = 0.5 * (1 - normals)
print("Visualizing normals in 2D")
display_rgb(rgb=rgba[:, :, :3], title="RGB image", block=False)
display_rgb(rgb=normals_colormap, title="Colormapped normals", block=True)
print("Visualizing normals in 3D")
display_pointcloud_with_downsampled_normals(point_cloud, zivid.PointCloud.Downsampling.by4x4)
The function implementation is demonstrated below.
def display_pointcloud_with_downsampled_normals(
point_cloud: PointCloud,
downsampling: PointCloud.Downsampling,
) -> None:
"""Display point cloud with downsampled normals.
Args:
point_cloud: A Zivid point cloud handle
downsampling: A valid Zivid downsampling factor to apply to normals
"""
rgb = point_cloud.copy_data("rgba")[:, :, :3]
xyz = point_cloud.copy_data("xyz")
point_cloud.downsample(downsampling)
normals = point_cloud.copy_data("normals")
display_pointcloud(xyz=xyz, rgb=rgb, normals=normals)
def display_pointcloud(xyz: np.ndarray, rgb: np.ndarray, normals: Optional[np.ndarray] = None) -> None:
"""Display point cloud provided from 'xyz' with colors from 'rgb'.
Args:
rgb: RGB image
xyz: A numpy array of X, Y and Z point cloud coordinates
normals: Ordered array of normal vectors, mapped to xyz
"""
xyz = np.nan_to_num(xyz).reshape(-1, 3)
if normals is not None:
normals = np.nan_to_num(normals).reshape(-1, 3)
rgb = rgb.reshape(-1, 3)
point_cloud_open3d = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(xyz))
point_cloud_open3d.colors = o3d.utility.Vector3dVector(rgb / 255)
if normals is not None:
point_cloud_open3d.normals = o3d.utility.Vector3dVector(normals)
print("Open 3D controls:")
print(" n: for normals")
print(" 9: for point cloud colored by normals")
print(" h: for all controls")
visualizer = o3d.visualization.Visualizer() # pylint: disable=no-member
visualizer.create_window()
visualizer.add_geometry(point_cloud_open3d)
if normals is None:
visualizer.get_render_option().background_color = (0, 0, 0)
visualizer.get_render_option().point_size = 1
visualizer.get_render_option().show_coordinate_frame = True
visualizer.get_view_control().set_front([0, 0, -1])
visualizer.get_view_control().set_up([0, -1, 0])
visualizer.run()
visualizer.destroy_window()
Conclusion
This tutorial shows how to use Zivid SDK to visualize point clouds in C++ and C# and third party libraries to visualize it in Python. Using third party libraries is demonstrated to visualize point clouds in Python, and to visualize color images, depth maps, and normals in C++, C#, and Python.