ROI box filter via ArUco marker

This tutorial demonstrates how to filter the point cloud transformed to the ArUco marker coordinate system based on a ROI box given relative to the marker.

Tip

Zivid calibration board contains an ArUco marker.

First, we load a point cloud of an ArUco marker.

const auto arucoMarkerFile = std::string(ZIVID_SAMPLE_DATA_DIR) + "/BinWithArucoMarker.zdf";
std::cout << "Reading ZDF frame from file: " << arucoMarkerFile << std::endl;
const auto frame = Zivid::Frame(arucoMarkerFile);
auto pointCloud = frame.pointCloud();

We can open the original point cloud in Zivid Studio and inspect it.

Note

The original point cloud is also in Sample Data.

Point cloud of a bin with ArUco marker

To skip the part about transforming the point cloud, which is also covered in Transform via ArUco marker, go to Filtering based on ROI box.

Transforming the point cloud

Since we are using OpenCV, we need to convert the 2D image from the point cloud to OpenCV image format.

std::cout << "Converting to OpenCV image format" << std::endl;
const auto grayImage = pointCloudToGray(pointCloud);

Then we configure the ArUco marker.

std::cout << "Configuring ArUco marker" << std::endl;
const auto markerDictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_100);
std::vector<int> markerIds;
std::vector<std::vector<cv::Point2f>> markerCorners;
cv::Ptr<cv::aruco::DetectorParameters> detectorParameters = cv::aruco::DetectorParameters::create();
detectorParameters->cornerRefinementMethod = cv::aruco::CORNER_REFINE_SUBPIX;

We then detect the ArUco marker in the 2D image.

std::cout << "Detecting ArUco Marker" << std::endl;
cv::aruco::detectMarkers(grayImage, markerDictionary, markerCorners, markerIds, detectorParameters);

Then we estimate the pose of the ArUco marker.

std::cout << "Estimating pose of detected ArUco marker" << std::endl;
const auto transformMarkerToCamera = estimateArUcoMarkerPose(pointCloud, markerCorners[0]);
const auto transformCameraToMarker = invertAffineTransformation(transformMarkerToCamera);

We then transform the point cloud to the ArUco marker coordinate system.

std::cout << "Transforming point cloud from camera frame to ArUco marker frame" << std::endl;
pointCloud.transform(transformCameraToMarker);

Filtering based on ROI box

Now we define the position of the bottom-left corner of the ROI box relative to the ArUco marker, and the ROI box size.

ROI box size and bottom-left corner relative to the ArUco marker
std::cout << "Bottom-Left ROI Box corner:" << std::endl;
const int roiBoxBottomLeftCornerX = 60; // Positive is "South"
const int roiBoxBottomLeftCornerY = 90; // Positive is "West"
const int roiBoxBottomLeftCornerZ = 15; // Positive is "Down"
std::cout << "X: " << roiBoxBottomLeftCornerX << std::endl
          << "Y: " << roiBoxBottomLeftCornerY << std::endl
          << "Z: " << roiBoxBottomLeftCornerZ << std::endl;
std::cout << "ROI Box size:" << std::endl;
const int roiBoxLength = 600;
const int roiBoxWidth = 400;
const int roiBoxHeight = 80;
std::cout << "Length: " << roiBoxLength << std::endl
          << "Width: " << roiBoxWidth << std::endl
          << "Height: " << roiBoxHeight << std::endl;

Now we filter the point cloud based on the size and position of the ROI box. The implementation is done using PCL library.

std::cout << "Filtering the point cloud beased on ROI Box" << std::endl;
const boost::shared_ptr<pcl::PointCloud<pcl::PointXYZRGB>> roiPointCloudPCL =
    roiBoxPointCloud(pointCloud,
                     roiBoxBottomLeftCornerX,
                     roiBoxBottomLeftCornerY,
                     roiBoxBottomLeftCornerZ,
                     roiBoxLength,
                     roiBoxWidth,
                     roiBoxHeight);

Finally, we visualize the transformed and filtered point cloud.

std::cout << "Displaying transformed point cloud after ROI Box filtering" << std::endl;
visualizePointCloud(roiPointCloudPCL);
ROI filtered and transformed point cloud of a bin with ArUco marker